扇形的弧长怎么算
1
扇形的弧长怎么算
弧长公式
l = n(圆心角)× π(圆周率)× r(半径)/180=α(圆心角弧度数)× r(半径)
在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πr,所以n°圆心角所对的弧长为l=n°πr÷180°(l=n°x2πr/360°)
例:半径为1cm,45°的圆心角所对的弧长为
l=nπr/180
=45×π×1/180
=45×3.14×1/180
约等于0.785
扇形的弧长第二公式为:
扇形的弧长,事实上就是圆的其中一段边长,扇形的角度是360度的几分之一,那么扇形的弧长就是这个圆的周长的几分之一,所以我们可以得出:
扇形的弧长=2πr×角度/360
其中,2πr是圆的周长,角度为该扇形的角度值
扩展资料
补充公式:
S扇=nπr^2/360
=πrnr/360
=2πrn/360×r/2
=πrn/180×r/2
所以:S扇=rL/2
还可以是S扇=nπr²/360
(n为圆心角的度数,L为该扇形对应的弧长。)
扇形面积:
扇形是与圆形有关的一种重要图形,其面积与圆心角(顶角)、圆半径相关,圆心角为n°,半径为r的扇形面积为n/360*πr^2。如果其顶角采用弧度单位,则可简化为1/2×弧度×半径。
扇形还与三角形有相似之处,上述简化的面积公式亦可看成:1/2×弧长×半径,与三角形面积:1/2×底×高相似。
2
扇形弧长如何算
S扇=(lR)/2 (l为扇形弧长) S扇=(n/360)πR^2 (n为圆心角的度数)弧长=θ*r ,θ是角度 r是半径 l=nπr÷180 在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πR,所以n°圆心角所对的弧长为l=nπR÷180。
3
怎么求扇形的弧长
必须先用正弦求出圆心角的度数
4
5
扇形弧长怎么算
1/4πd
6
-
以上是关于求扇形的弧长公式的问答