首页 - 常识问答 - 正文

把直线极坐标方程转化成直角坐标方程.有过程最好

日期:2023-4-80 次浏览

1

把直线极坐标方程转化成直角坐标方程.有过程最好

将直线极坐标方程pcos(θ-π/4)=2√2转化成直角坐标方程的答案为:x+y=4

解题过程如图:

拓展资料:

在数学中,极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。

百度百科——极坐标方程

本回答被网友采纳

2

已知直线的极坐标方程如何转化为直角坐标系方程

在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对(ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。关于普通方程与极坐标方程的转化,只要把普通方程的x用ρcosθ代替,把y用ρsinθ代替,再整理,就行了。关于圆锥曲线,略举一个例子:在直角坐标中,圆心在原点的圆的标准方程为x2+y2=R2,其中R为半径而同样的一个圆,在极坐标中的方程就可写为ρ=R,从而极大地简化了方程。

3

怎样把直线的直角坐标方程转化为参数方程

直线的参数方程 x=x'+tcosa y=y'+tsina ,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数.或者x=x'+ut,y=y'+vt (t属于R) x',y'直线经过定点(x',y'),u,v表示直线的方向 向量d=(u,v)

拓展资料:

参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。

案例:

曲线的 极坐标参数方程ρ=f(t),θ=g(t)。

圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标

椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数

参数方程

双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数

抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数

直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数.

或者x=x'+ut,y=y'+vt (t∈R)x',y'直线经过定点(x',y'),u,v表示直线的方向向量d=(u,v)

圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数

平 摆线参数方程 x=r(θ-sinθ) y=r(1-cosθ)r为圆的半径,θ是圆的半径所经过的角度(滚动角),当θ由0变到2π时,动点就画出了摆线的一支,称为一拱。

本回答被网友采纳

4

把极坐标方程转换成直角坐标

极坐标如何转化成直角坐标

5

直线的直角坐标方程怎么化为极坐标方程

极坐标系与平面直角坐标系之间的变换:

从极坐标和可以变换为直角坐标:

或:

从直角坐标和也可以变换为极坐标:

这方程式给出在值域的弧度。改用角度单位,值域为。

这些方程式假定极点是直角坐标系的原点,极轴为x-坐标轴,而y-坐标轴方向的弧度为,角度为 +90度。

拓展资料:

在数学中,极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。

在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。

对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。

本回答被网友采纳

6

怎么将直线的参数方程转化成极坐标方程?

把直角坐标系中(x,y),x用ρcosθ代替,y用ρsinθ代替,直接带入即可。设曲线C的极坐标方程为r=r(θ),则C的参数方程为x=r(θ)cosθ,y=r(θ)sinθ,其中θ为极角。由参数方程求导法,得曲线C的切线对x轴的斜率为yˊ=rˊ(θ)sinθ+r(θ)cosθ∕rˊ(θ)cosθ-r(θ)sinθ=rˊtanθ+r∕rˊ-rtanθ设曲线C在点M(r,θ)处的极半径OM与切线MT间的夹角为Ψ,则Ψ=α-θ,故有tanΨ=tan(α-θ)=yˊ-tanθ∕1+yˊtanθ,将yˊ代入,化简得tanΨ=r(θ)∕rˊ(θ)。扩展资料:柯西中值定理:如果函数f(x)及F(x)满足:⑴在闭区间[a,b]上连续;⑵在开区间(a,b)内可导;⑶对任一x∈(a,b),F'(x)≠0。那么在(a,b)内至少有一点ζ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ζ)/F'(ζ)成立。柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积;推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。参数曲线亦可以是多于一个参数的函数。例如参数表面是两个参数(s,t)或(u,v)的函数。

-

以上是关于极坐标方程化为直角坐标方程的问答