首页 - 常识问答 - 正文

积化和差公式是什么,怎么推导出来的

日期:2023-4-80 次浏览

1

积化和差公式是什么,怎么推导出来的

sinasinb=-[cos(a+b)-cos(a-b)]/2

cosacosb=[cos(a+b)+cos(a-b)]/2

sinacosb=[sin(a+b)+sin(a-b)]/2

cosasinb=[sin(a+b)-sin(a-b)]/2

推导过程:

sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-cosasinb

把两式相加得到:sin(a+b)+sin(a-b)=2sinacosb

所以,sinacosb=[sin(a+b)+sin(a-b)]/2

同理,把两式相减,得到:

cosasinb=[sin(a+b)-sin(a-b)]/2

cos(a+b)=cosacosb-sinasinb,cos(a-b)=cosacosb+sinasinb

把两式相加,得到:cos(a+b)+cos(a-b)=2cosacosb

所以,cosacosb=[cos(a+b)+cos(a-b)]/2

同理,两式相减,得到sinasinb=-[cos(a+b)-cos(a-b)]/2

扩展资料:

和差化积公式

sinα+sinβ=2sin(α+β)/2·cos(α-β)/2

sinα-sinβ=2cos(α+β)/2·sin(α-β)/2

cosα+cosβ=2cos(α+β)/2·cos(α-β)/2

cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2

本回答被网友采纳

2

三角函数的积化和差公式是什么,怎么推导出来的

首先,我们知道sin(ab)=sina*cosbcosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(ab)sin(a-b)=2sina*cosb所以,sina*cosb=(sin(ab)sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(ab)-sin(a-b))/2同样的,我们还知道cos(ab)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosbsina*sinb所以,把两式相加,我们就可以得到cos(ab)cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(ab)cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(ab)-cos(a-b))/2这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(ab)sin(a-b))/2cosa*sinb=(sin(ab)-sin(a-b))/2cosa*cosb=(cos(ab)cos(a-b))/2sina*sinb=-(cos(ab)-cos(a-b))/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的ab设为x,a-b设为y,那么a=(xy)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinxsiny=2sin((xy)/2)*cos((x-y)/2)sinx-siny=2cos((xy)/2)*sin((x-y)/2)cosxcosy=2cos((xy)/2)*cos((x-y)/2)cosx-cosy=-2sin((xy)/2)*sin((x-y)/2)

3

三角函数的积化和差公式是什么,怎么推导出来的。

首先,我们知道sin(ab)=sina*cosbcosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(ab)sin(a-b)=2sina*cosb所以,sina*cosb=(sin(ab)sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(ab)-sin(a-b))/2同样的,我们还知道cos(ab)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosbsina*sinb所以,把两式相加,我们就可以得到cos(ab)cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(ab)cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(ab)-cos(a-b))/2这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(ab)sin(a-b))/2cosa*sinb=(sin(ab)-sin(a-b))/2cosa*cosb=(cos(ab)cos(a-b))/2sina*sinb=-(cos(ab)-cos(a-b))/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的ab设为x,a-b设为y,那么a=(xy)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinxsiny=2sin((xy)/2)*cos((x-y)/2)sinx-siny=2cos((xy)/2)*sin((x-y)/2)cosxcosy=2cos((xy)/2)*cos((x-y)/2)cosx-cosy=-2sin((xy)/2)*sin((x-y)/2)

4

和差化积公式是如何推导的?

和差化积是一种计算三角函数时所使用的数学公式。和差化积公式共10组,包括正弦、余弦、正切和余切的和差化积公式,是三角函数中的一组恒等式。在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次。

5

积化和差公式的推导! 怎么做

首先,我们知道sin(ab)=sina*cosbcosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(ab)sin(a-b)=2sina*cosb所以,sina*cosb=(sin(ab)sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(ab)-sin(a-b))/2同样的,我们还知道cos(ab)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosbsina*sinb所以,把两式相加,我们就可以得到cos(ab)cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(ab)cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(ab)-cos(a-b))/2这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(ab)sin(a-b))/2cosa*sinb=(sin(ab)-sin(a-b))/2cosa*cosb=(cos(ab)cos(a-b))/2sina*sinb=-(cos(ab)-cos(a-b))/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的ab设为x,a-b设为y,那么a=(xy)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinxsiny=2sin((xy)/2)*cos((x-y)/2)sinx-siny=2cos((xy)/2)*sin((x-y)/2)cosxcosy=2cos((xy)/2)*cos((x-y)/2)cosx-cosy=-2sin((xy)/2)*sin((x-y)/2)

6

和差化积,积化和差公式是怎样推导出来的?

sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-cosasinb两式相加得:sinacosb=1/2[sin(a+b)+sin(a-b)]...(1)两式相减得:cosasinb=1/2[sin(a+b)-sin(a-b)]...(2)cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb两式相加得:cosacosb=1/2[cos(a+b)+cos(a-b)]...(3)两式相减得:sinasinb=-1/2[cos(a+b)-cos(a-b)]...(4)用(a+b)/2、(a-b)/2分别代替上面四式中的a,b就可得到和差化积的四个式子。如:(1)式可变为:sina+sinb=2sin[(a+b)/2]*cos[(a-b)/2]其它依次类推即可。

-

以上是关于积化和差公式推导过程的问答