首页 - 常识问答 - 正文

初中函数的概念是什么

日期:2023-4-80 次浏览

1

2

初中教材中函数概念及表述 高中的呢?

函数概念及表述,高中和初中都是一样的,区别于应用方面  函数概念:  在一个变化过程中,发生变化的量叫变量(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。  自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。  因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。  函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。  表述:  解析式法  用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。这种方法的优点是能简明、准确、清楚地表示出函数与自变量之间的数量关系;缺点是求对应值时往往要经过较复杂的运算,而且在实际问题中有的函数关系不一定能用表达式表示出来。  列表法  用列表的方法来表示两个变量之间函数关系的方法叫做列表法。这种方法的优点是通过表格中已知自变量的值,可以直接读出与之对应的函数值;缺点是只能列出部分对应值,难以反映函数的全貌。  图像法  把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。这种表示函数关系的方法叫做图象法。这种方法的优点是通过函数图象可以直观、形象地把函数关系表示出来;缺点是从图象观察得到的数量关系是近似的。

3

初中数学函数的定义是什么

在某一个过程中有两个变量x,y,当x在某一个范围内取一个值时,y都有唯一的值和他对应,这时,我们说x是自变量,y是x的函数(或因变量)

4

初中数学函数的定义是什么

在某一个过程中有两个变量x,y,当x在某一个范围内取一个值时,y都有唯一的值和他对应,这时,我们说x是自变量,y是x的函数(或因变量)

5

初中的函数的定义是什么?初中学过哪些函数

定义:

函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

初中学过的函数有正比例函数,一次函数,二次函数,反比例函数。

扩展资料:

有界性

设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界 。

单调性

设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调递增的;如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数 。

奇偶性设为一个实变量实值函数,若有f(-x)= - f(x),则f(x)为奇函数。

几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。

奇函数的例子有x、sin(x)、sinh(x)和erf(x)。

设f(x)为一实变量实值函数,若有,则f(x)为偶函数。

几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变。偶函数的例子有|x|、x2、cos(x)和cosh(x)。偶函数不可能是个双射映射 。

单射函数,将不同的变量映射到不同的值。即:对于所有和,当时有。

满射函数,其值域即为其对映域。即:对映射f的对映域中之任意y,都存在至少一个x满足 y=f(x)。

双射函数,既是单射的又是满射的。也叫一一对应。双射函数经常被用于表明集合X和Y是等势的,即有一样的基数。如果在两个集合之间可以建立一个一一对应,则说这两个集合等势。

中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的。

中国古代“函”字与“含”字通用,都有着“包含”的意思。李善兰给出的定义是:“凡式中含天,为天之函数。”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数。”

所以“函数”是指公式里含有变量的意思。我们所说的方程的确切定义是指含有未知数的等式。但是方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即所说的线性方程组 。

本回答被网友采纳

6

初中数学中函数的概念是什么?

在一个变化过程中,有两个变量x和y,如果给定了一个x值,相应的就确定唯一一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量

-

以上是关于初中函数的概念的问答