首页 - 常识问答 - 正文

等比数列所有公式 等比数列公式全部内容

日期:2023-4-80 次浏览

1

等比数列公式全部内容

等比数列的通项公式是:an=a1×q^(n-1)(2)任意两项am,an的关系为an=am·q^(n-m)(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。(5)等比求和:sn=a1+a2+a3+.......+an①当q≠1时,sn=a1(1-q^n)/(1-q)或sn=(a1-an×q)÷(1-q)②当q=1时,sn=n×a1(q=1)记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

2

等比数列公式

Sn=[a1*(1-q^n)]/(1-q) 为等比数列 而这里n为未知数 可以写成F(n)=[a1*(1-q^n)]/(1-q) 当q=1时 为常数列 也就是 n个a1相加为n*a1

3

等比数列公式是什么

一个数列,如果任意的后一项与前一项的比值是同一个常数,   即:A(n+1)/A(n)=q (n∈N*),   这个数列叫等比数列,其中常数q 叫作公比。   如:   2、4、8、16......2^10    就是一个等比数列,其公比为2,   可写为(A2)的平方=(A1)x(A3) 编辑本段通项公式  an=a1×q^(n-1); 通项公式与推广式  推广式:an=am×q^(n-m);

4

数学,等差、等比数列有关的全部公式,谢了

记公式没用的。你公式全记住了,也不代表你会做题。在做题的过程中,所有公式自然就记住了。以下的所谓的公式,是我根据09、10年各省市高考题总结的。事实上,单纯的记忆没用的,只有做题才有用。等差数列通项公式,两元素为首项a1和公差d等比数列通项公式,两元素为首项a1和公比q,注意取值范围a1≠0,q≠0等比数列各项为正,即a1>0且q>0等比数列前n项和公式Sn,主要分q=1和q≠1讨论,当q≠1时,公式可变形为Sn=k-kq^(n-1),其中k为常数,是指数函数形式,注意其常数项和q^(n-1)前的系数一定是相等的等比数列中,同时出现前m项和Sm以及前2m项和S2m或前nm项和Snm(n表示m的倍数)时,注意两者联立后整体代换,注意因式分解等比中项、等差中项的定义等差数列前n项和的公式,注意公式有多个,根据场合运用。Sn=(a1+an)n/2=a1n+n(n-1)d/2=dn^2/2+(a1-d/2)n=k1n^2+k2n,其中k1,k2为常数,注意是二次函数形式,但一定没有常数项注意对数函数、指数函数中,等差数列和等比数列的穿插应用,以对数为例,lna+lnb=lnab,由此和的形式变成了积的形式,等式左边可以出等差数列的题目,等式右边可以出等比数列的题目注意等差数列、等比数列的证明方法,以等差数列为例,可以证明其通项公式为一次函数形式,或证明相邻两项等差,或证明中间项的2倍为前后两项的和,等等注意有限项等比数列、等差数列中运用基本不等式注意非0常数数列既是等差数列,也是等比数列注意一个公式的运用,两个等差数列{an}和{bn}的前n项和分别为An和Bn,则恒有ai/bi=A[2i-1]/B[2i-1],其中i为任意正整数注意,证明一个3项数列不为等比数列的方法(以下结论都可以推广到任意有限项或无限项),其一,若证得相邻两项同正或同负,另一项符号相反,则得证;其二,只要证得有1个0,就一定不是等比数列;等等,方法很多,也很灵活推荐一道有关等差、等比数列的高考压轴题,有难度。08上海高考最后一大题。

5

等比数列公式的公式

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。(1)等比数列的通项公式是:若通项公式变形为 (n∈N*),当q>0时,则可把 看作自变量n的函数,点(n, )是曲线 上的一群孤立的点。(2) 任意两项 , 的关系为(3)从等比数列的定义、通项公式、前n项和公式可以推出: ,k∈{1,2,…,n}(4)等比中项:当r满足p+q=2r时,那么则有 ,即 为 与 的等比中项。(5) 等比求和:①当q≠1时, 或②当q=1时,记,则有另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

6

等比数列所有公式

-

以上是关于等比数列所有公式的问答