首页 - 常识问答 - 正文

等价无穷小替换公式一共有多少?要详细的

日期:2023-4-80 次浏览

1

等价无穷小替换公式一共有多少?要详细的

等价无穷小替换公式如下 :

以上各式可通过泰勒展开式推导出来。

等价无穷小是无穷小的一种,也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。

扩展资料:

求极限时,使用等价无穷小的条件:

1. 被代换的量,在取极限的时候极限值为0;

2. 被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以,加减时可以整体代换,不一定能随意单独代换或分别代换。

参考资料:

百度百科_等价无穷小

本回答被网友采纳

2

高等数学中所有等价无穷小的公式

▄︻┻═┳一 根据arcsinx的泰勒公式,可以轻松得到为同阶不等价无穷小。x→0,时x→sinx ;x→arcsinx ; x→tanx ;x→arctanx; x→ln(1+x); x→(e^x-1); [(1+x)^n-1]→nx;(1-cosx)→x*x/2;a^x-1→xlna, ln(1+x)→x;麦克劳林公式也是, 那个符号不好写,你课本上或者习题里有.例1 limx→0tanx-sinxx3 给你举几个利用无穷小的例子 例1 limx→0tanx-sinxx3  解:原式=limx→0sinx(1-cosx)x3cosx=limx→0x·12x2x3(∵ sinx~x,1-cosx~x22)=12  此题也可用罗比塔法则做,但不能用性质④做。 ∵ tanx-sinxx3=x-xx3=0,不满足性质④的条件,否则得出错误结论0。  例2 limx→0e2x-31+xx+sinx2  解:原式=limx→0e2x-1-(31+x-1)x+x2=limx→02x-13xx(1+x)=53例3 limx→0(1x2-cot2x)  解法1:原式=limx→0sin2x-x2cos2xx2sin2x =limx→0(sinx+xcosx)(sinx-xcosx)x4 =limx→0x2(1+cosx)(1-cosx)x4 (∵ sinx~x) =limx→0(1+cosx)(1-cosx)x2 =limx→012x2·(1+cosx)x2=1  解法2:原式=limx→0tan2x-x2x2tan2x =limx→0(tanx+x)(tanx-x)x4 =limx→02x(tanx-x)x44 (∵ tanx~x) =limx→02(tanx-x)x3 =limx→02(sec2x-1)3x2 =23limx→0tan2xx2=23 (∵ tanx~x)例4[3] limx→0+tan(sinx)sin(tanx) 解:原式=limx→0+sec2(sinx)cosx2tan(sinx)cos(tanx)sec2x2sin(tanx) (用罗比塔法则) =limx→0+sec2(sinx)cosxcos(tanx)sec2x·limx→0+sin(tanx)tan(sinx) (分离非零极限乘积因子) =limx→0+sin(tanx)tan(sinx) (算出非零极限) =limx→0+cos(sinx)sec2x2sin(tanx)sec2(sinx)cosx2tan(sinx) (用罗比塔法则) =limx→0+cos(sinx)sec2xsec2(sinx)cosx·limx→0+tan(sinx)sin(tanx) =limx→0+tan(sinx)sin(tanx) 出现循环,此时用罗比塔法则求不出结果。怎么办?用等价无穷小代换。 ∵ x~sinx~tanx(x→0) ∴ 原式=limx→0+xx=1而得解。

3

求详细的等价无穷小的替换公式

4

考研范围内等价无穷小的替换公式有哪些?

当x→0时,   sinx~x   tanx~x   arcsinx~x    arctanx~x    1-cosx~(1/2)*(x^2)~ secx-1  (a^x)-1~x*lna ((a^x-1)/x~lna)    (e^x)-1~x    ln(1+x)~x    (1+Bx)^a-1~aBx    [(1+x)^1/n]-1~(1/n)*x    loga(1+x)~x/lna    (1+x)^a-1~ax(a≠0)    值得注意的是,等价无穷小一般只能在乘除中替换, 在加减中替换有时会出错(加减时可以整体代换,不能单独代换或分别代换)本回答被网友采纳

5

6

考研范围内,等价无穷小的替换公式有哪些?

-

以上是关于等价无穷小公式大全的问答